Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 357
Filter
1.
Reprod Domest Anim ; 58(12): 1718-1731, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917549

ABSTRACT

Follistatin (FST), a member of the transforming growth factor-ß (TGF-ß) superfamily, has been identified as an inhibitor of follicle-stimulating hormone. Previous studies showed that it plays an important role in animal reproduction. Therefore, this study aims to investigate its effect on the maturation of buffalo oocytes in vitro, and the underlying mechanism of FST affecting oocyte maturation was also explored in buffalo cumulus cells. Results showed that FST was enriched in the ovary and expressed at different stages of buffalo ovarian follicles as well as during oocyte maturation and early embryo development. The FST expression level was up-regulated in MII buffalo oocytes compared with the GV stage (p < .05). To study the effects of FST on buffalo oocytes' maturation and early embryonic development, we added the pcD3.1 skeleton vector and PCD3.1-EGFP-FST vector into the maturation fluid of buffalo oocytes, respectively. It was demonstrated that FST promoted the in vitro maturation rate of buffalo oocytes and the blastocyst rate of embryos cultured in vitro (p < .05). By interfering with FST expression, we discovered that FST in cumulus cells plays a crucial role in oocyte maturation. Interference with the FST expression during the buffalo oocyte maturation did not affect the first polar body rate of buffalo oocyte (p > .05). In contrast, the location of mitochondria in oocytes was abnormal, and the cumulus expansion area was reduced (p < .05). After parthenogenetic activation, the cleavage and blastocyst rates of the FST-interfered group were reduced (p < .05). Furthermore, RT-qPCR was performed to investigate further the underlying mechanism by which FST enhances oocyte maturation. We found that overexpression of FST could up-regulate the expression level of apoptosis suppressor gene Bcl-2 and TGF-ß/SMAD pathway-related genes TGF-ß, SMAD2, and SMAD3 (p < .05). In contrast, the expression levels of SMAD4 and pro-apoptotic gene BAX were significantly decreased (p < .05). The FST gene could affect buffalo oocyte maturation by regulating the oocyte mitochondria integrity, the cumulus expansion, cumulus cell apoptosis, and the expression levels of TGF-ß/SMAD pathway-related genes.


Subject(s)
Buffaloes , Follistatin , Female , Animals , Buffaloes/genetics , Buffaloes/metabolism , Follistatin/genetics , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Oocytes , Ovarian Follicle/physiology , Embryonic Development , Blastocyst , Cumulus Cells/physiology , Transforming Growth Factor beta
2.
Nat Commun ; 14(1): 4417, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537159

ABSTRACT

Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin ßA. We demonstrate that activin A, a homodimer of inhibin ßA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin ßA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.


Subject(s)
Cholesteatoma , Osteogenesis , Humans , Mice , Animals , Osteogenesis/genetics , Transcriptome , Activins/genetics , Activins/metabolism , Follistatin/genetics , Follistatin/metabolism , Cholesteatoma/pathology , Fibroblasts/metabolism
3.
Proc Natl Acad Sci U S A ; 120(24): e2219649120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276408

ABSTRACT

How left-right (LR) asymmetry emerges in a patterning field along the anterior-posterior axis remains an unresolved problem in developmental biology. Left-biased Nodal emanating from the LR organizer propagates from posterior to anterior (PA) and establishes the LR pattern of the whole embryo. However, little is known about the regulatory mechanism of the PA spread of Nodal and its asymmetric activation in the forebrain. Here, we identify bilaterally expressed Follistatin (Fst) as a regulator blocking the propagation of the zebrafish Nodal ortholog Southpaw (Spaw) in the right lateral plate mesoderm (LPM), and restricting Spaw transmission in the left LPM to facilitate the establishment of a robust LR asymmetric Nodal patterning. In addition, Fst inhibits the Activin-Nodal signaling pathway in the forebrain thus preventing Nodal activation prior to the arrival, at a later time, of Spaw emanating from the left LPM. This contributes to the orderly propagation of asymmetric Nodal activation along the PA axis. The LR regulation function of Fst is further confirmed in chick and frog embryos. Overall, our results suggest that a robust LR patterning emerges by counteracting a Fst barrier formed along the PA axis.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Follistatin/genetics , Follistatin/metabolism , Body Patterning/genetics , Transforming Growth Factor beta/metabolism , Gene Expression Regulation, Developmental
4.
Clin Cancer Res ; 29(10): 1969-1983, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36795892

ABSTRACT

PURPOSE: We recently reported that the transcription factor NFATC4, in response to chemotherapy, drives cellular quiescence to increase ovarian cancer chemoresistance. The goal of this work was to better understand the mechanisms of NFATC4-driven ovarian cancer chemoresistance. EXPERIMENTAL DESIGN: We used RNA sequencing to identify NFATC4-mediated differential gene expression. CRISPR-Cas9 and FST (follistatin)-neutralizing antibodies were used to assess impact of loss of FST function on cell proliferation and chemoresistance. ELISA was used to quantify FST induction in patient samples and in vitro in response to chemotherapy. RESULTS: We found that NFATC4 upregulates FST mRNA and protein expression predominantly in quiescent cells and FST is further upregulated following chemotherapy treatment. FST acts in at least a paracrine manner to induce a p-ATF2-dependent quiescent phenotype and chemoresistance in non-quiescent cells. Consistent with this, CRISPR knockout (KO) of FST in ovarian cancer cells or antibody-mediated neutralization of FST sensitizes ovarian cancer cells to chemotherapy treatment. Similarly, CRISPR KO of FST in tumors increased chemotherapy-mediated tumor eradication in an otherwise chemotherapy-resistant tumor model. Suggesting a role for FST in chemoresistance in patients, FST protein in the abdominal fluid of patients with ovarian cancer significantly increases within 24 hours of chemotherapy exposure. FST levels decline to baseline levels in patients no longer receiving chemotherapy with no evidence of disease. Furthermore, elevated FST expression in patient tumors is correlated with poor progression-free, post-progression-free, and overall survival. CONCLUSIONS: FST is a novel therapeutic target to improve ovarian cancer response to chemotherapy and potentially reduce recurrence rates.


Subject(s)
Follistatin , Ovarian Neoplasms , Humans , Female , Follistatin/genetics , Follistatin/metabolism , Follistatin/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics
5.
Nat Commun ; 14(1): 143, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650150

ABSTRACT

Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.


Subject(s)
Carcinoma , Lung Neoplasms , Humans , Animals , Mice , Macrophages, Alveolar/metabolism , Activins/metabolism , Follistatin/genetics , Follistatin/metabolism , Lung/pathology , Lung Neoplasms/pathology , Carcinoma/metabolism
6.
J Cell Mol Med ; 27(1): 127-140, 2023 01.
Article in English | MEDLINE | ID: mdl-36528873

ABSTRACT

Follistatin (FST) and activin A as gonadal proteins exhibit opposite effects on follicle-stimulating hormone (FSH) release from pituitary gland, and activin A-FST system is involved in regulation of decidualization in reproductive biology. However, the roles of FST and activin A in migration of decidualized endometrial stromal cells are not well characterized. In this study, transwell chambers and microfluidic devices were used to assess the effects of FST and activin A on migration of decidualized mouse endometrial stromal cells (d-MESCs). We found that compared with activin A, FST exerted more significant effects on adhesion, wound healing and migration of d-MESCs. Similar results were also seen in the primary cultured decidual stromal cells (DSCs) from uterus of pregnant mouse. Simultaneously, the results revealed that FST increased calcium influx and upregulated the expression levels of the migration-related proteins MMP9 and Ezrin in d-MESCs. In addition, FST increased the level of phosphorylation of JNK in d-MESCs, and JNK inhibitor AS601245 significantly attenuated FST action on inducing migration of d-MESCs. These data suggest that FST, not activin A in activin A-FST system, is a crucial chemoattractant for migration of d-MESCs by JNK signalling to facilitate the successful uterine decidualization and tissue remodelling during pregnancy.


Subject(s)
Cell Movement , Endometrium , Follistatin , MAP Kinase Signaling System , Animals , Female , Mice , Pregnancy , Cell Movement/physiology , Follicle Stimulating Hormone/metabolism , Follistatin/genetics , Follistatin/metabolism , Stromal Cells/metabolism , Uterus/metabolism , Endometrium/metabolism , MAP Kinase Signaling System/physiology
7.
Proc Natl Acad Sci U S A ; 120(1): e2213099120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36577057

ABSTRACT

The cochlea's ability to discriminate sound frequencies is facilitated by a special topography along its longitudinal axis known as tonotopy. Auditory hair cells located at the base of the cochlea respond to high-frequency sounds, whereas hair cells at the apex respond to lower frequencies. Gradual changes in morphological and physiological features along the length of the cochlea determine each region's frequency selectivity, but it remains unclear how tonotopy is established during cochlear development. Recently, sonic hedgehog (SHH) was proposed to initiate the establishment of tonotopy by conferring regional identity to the primordial cochlea. Here, using mouse genetics, we provide in vivo evidence that regional identity in the embryonic cochlea acts as a framework upon which tonotopy-specific properties essential for frequency selectivity in the mature cochlea develop. We found that follistatin (FST) is required for the maintenance of apical cochlear identity, but dispensable for its initial induction. In a fate-mapping analysis, we found that FST promotes expansion of apical cochlear cells, contributing to the formation of the apical cochlear domain. SHH, in contrast, is required both for the induction and maintenance of apical identity. In the absence of FST or SHH, mice produce a short cochlea lacking its apical domain. This results in the loss of apex-specific anatomical and molecular properties and low-frequency-specific hearing loss.


Subject(s)
Follistatin , Hedgehog Proteins , Animals , Mice , Follistatin/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Cochlea/physiology , Hearing/physiology , Mammals/metabolism
8.
Front Endocrinol (Lausanne) ; 14: 1255591, 2023.
Article in English | MEDLINE | ID: mdl-38234423

ABSTRACT

Background: Recurrent pregnancy loss is a distressing event during pregnancy, and understanding its causal factors is crucial. Follistatin, a glycoprotein involved in folliculogenesis and embryogenesis, has been implicated as a potential contributor to the risk of spontaneous abortion. However, establishing a causal relationship requires rigorous investigation using robust methods. Methods: In this study, we utilized mendelian randomization (MR), a powerful genetic epidemiological approach, to examine the causal relationship between follistatin levels and spontaneous abortion. We obtained instrumental variables strongly associated with follistatin levels from large-scale genome-wide association from the IEU database. The inverse variance weighting (IVW) method was taken as gold standard. We also performed sensitivity test to evaluate the robustness of our result. Results: MR analysis revealed a significant causal relationship between low follistatin levels and spontaneous abortion (p = 0.03). Sensitivity analyses, including pleiotropy test, heterogeneity test, and leave-one-out analysis, all supported the robustness of our findings. Conclusion: Our study provides compelling evidence supporting the causal relationship between low follistatin levels and increased risk of spontaneous abortion. These findings underscore the importance of follistatin in the etiology of spontaneous abortion and suggest potential preventive interventions. Modulating follistatin levels or relevant pathways could hold promise for reducing the incidence of spontaneous abortion and improving reproductive outcomes. The utilization of MRs strengthens the validity of our results by mitigating confounding and reverse causality biases. Further research is needed to elucidate the underlying molecular mechanisms and explore therapeutic strategies targeting follistatin levels.


Subject(s)
Abortion, Spontaneous , Female , Humans , Pregnancy , Abortion, Spontaneous/etiology , Abortion, Spontaneous/genetics , Follistatin/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Risk Factors
9.
J Sports Sci Med ; 21(4): 616-624, 2022 12.
Article in English | MEDLINE | ID: mdl-36523894

ABSTRACT

Resistance exercise (RE) activates cell signaling pathways associated with myostatin. Decorin is located in the extracellular matrix (ECM) and can block the inhibitory effect of myostatin. This study sought to determine the impact of low-load (LL) and high-load (HL) RE on myostatin mRNA and protein expression along with changes in muscle decorin and circulating follistatin. Ten resistance-trained men performed a LL (50% 1RM) and HL (80% 1RM) RE session using the angled leg press and leg extension with load and volume equated. Venous blood samples and muscle biopsies were obtained prior to and at 3h and 24h following each RE session. Muscle myostatin mRNA expression was increased at 24h post-exercise (p = 0.032) in LL and at 3h (p = 0.044) and 24h (p = 0.003) post-exercise in HL. Muscle decorin was increased at 24h post-exercise (p < 0.001) in LL and HL; however, muscle myostatin was increased at 24h post-exercise (p < 0.001) only in HL. For muscle Smad 2/3, no significant differences were observed (p > 0.05). Serum follistatin was increased and myostatin decreased at 24h post-exercise (p < 0.001) in LL and HL. Muscle myostatin gene and protein expression increased in response to HL RE. However, serum myostatin was decreased in the presence of increases in decorin in muscle and follistatin in circulation. Therefore, our data suggest a possible mechanism may exist where decorin within the ECM is able to bind to, and decrease, myostatin that might otherwise enter the circulation for activin IIB (ACTIIB) receptor binding and subsequent canonical signaling through Smad 2/3.


Subject(s)
Decorin , Exercise , Myostatin , Humans , Male , Decorin/genetics , Decorin/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Follistatin/genetics , Follistatin/metabolism , Muscle, Skeletal/physiology , Myostatin/genetics , Myostatin/metabolism , Resistance Training , RNA, Messenger/genetics , Exercise/physiology
10.
Physiol Res ; 71(6): 783-790, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36281727

ABSTRACT

Myostatin (MSTN), an important negative regulator of skeletal muscle, plays an important role in skeletal muscle health. In previous study, we found that the expression of MSTN was different during skeletal muscle injury repair. Therefore, we explored the expression changes of MSTN at different time points during skeletal muscle injury repair after eccentric exercise. In addition, MSTN is regulated by follistatin (FST) and decorin (DCN) in vivo, so our study examined the time-specific changes of FST, DCN and MSTN in the circulation and skeletal muscle during skeletal muscle injury repair after eccentric exercise, and to explore the reasons for the changes of MSTN in the process of exercise-induced muscle injury repair, to provide a basis for promoting muscle injury repair. The rats performed one-time eccentric exercise. Blood and skeletal muscle were collected at the corresponding time points, respectively immediate after exercise (D0), one day (D1), two days (D2), three days (D3), seven days (W1) and fourteen days (W2) after exercise (n=8). The levels of MSTN, FST, DCN in serum and mRNA and protein expression in muscle were detected. MSTN changes in the blood and changes in DCN and FST showed the opposite trend, except immediately after exercise. The change trends of mRNA and protein of gastrocnemius DCN and MSTN are inconsistent, there is post-transcriptional regulation of MSTN and DCN in gastrocnemius. Acute eccentric exercise might stimulate the secretion of DCN and FST into the circulation and inhibit MSTN. MSTN may be regulated by FST and DCN after acute eccentric exercise.


Subject(s)
Decorin , Follistatin , Muscle, Skeletal , Myostatin , Physical Conditioning, Animal , Animals , Rats , Decorin/genetics , Decorin/metabolism , Follistatin/genetics , Follistatin/metabolism , Muscle, Skeletal/metabolism , Myostatin/genetics , Myostatin/metabolism , RNA, Messenger/genetics , Time Factors
11.
Curr Med Sci ; 42(4): 832-840, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35864413

ABSTRACT

OBJECTIVE: Follistatin (FST) inhibits the action of activin by interfering with the binding of activin to its receptor. Although the prognostic value of FST in various cancers has been investigated previously, studies rarely focused on hypopharyngeal carcinoma (HPC). In our study, the effect of FST expression on HPC tissues and cell lines was investigated. METHODS: A total of 60 patients with HPC were recruited for this study. Levels of FST mRNA and protein were measured by quantitative polymerase chain reaction (PCR) and immunohistochemistry in HPC tissue samples and by qPCR in the HPC FaDu cells, as well as immortal nasopharyngeal epithelial cell line NP-69 cells. After silencing the FST expression in FaDu cells using lentivirus-mediated siRNA that was specific for FST mRNA, cell proliferation was determined by a Celigo assay. Tumor growth was monitored in nude mice and viability was determined by a methylthiazoletetrazolium assay. The ratio of cell cycle arrest and apoptosis was evaluated by flow cytometry. The colony formation ability was performed using Giemsa staining. In addition, wound healing and Transwell migration and invasion assays were performed for the analysis of cell motility. RESULTS: FST expression was significantly higher in human HPC tissue and FaDu cells than in normal tissue and NP-69 cells. A higher expression of FST in HPC samples was positively correlated with advanced tumors. Moreover, FST knockdown by shRNA significantly decreased cell growth, colony formation, migration and invasion. Furthermore, FST silencing increased the cell apoptosis percentage, and arrested cell cycle in the S phase in FaDu cells. In addition, FST silencing suppressed tumor growth in vivo. CONCLUSIONS: Our results indicated that the FST gene was associated with HPC progression and may serve as a potential therapeutic target for the treatment of HPC.


Subject(s)
Carcinoma , Hypopharyngeal Neoplasms , Activins/genetics , Activins/metabolism , Animals , Cell Line, Tumor , Down-Regulation/genetics , Follistatin/genetics , Follistatin/metabolism , Humans , Hypopharyngeal Neoplasms/genetics , Hypopharyngeal Neoplasms/metabolism , Hypopharyngeal Neoplasms/pathology , Lentivirus/genetics , Mice , Mice, Nude , RNA, Messenger , RNA, Small Interfering/genetics
12.
Proc Natl Acad Sci U S A ; 119(20): e2121499119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35537048

ABSTRACT

As the global elderly population grows, it is socioeconomically and medically critical to provide diverse and effective means of mitigating the impact of aging on human health. Previous studies showed that the adeno-associated virus (AAV) vector induced overexpression of certain proteins, which can suppress or reverse the effects of aging in animal models. In our study, we sought to determine whether the high-capacity cytomegalovirus vector (CMV) can be an effective and safe gene delivery method for two such protective factors: telomerase reverse transcriptase (TERT) and follistatin (FST). We found that the mouse cytomegalovirus (MCMV) carrying exogenous TERT or FST (MCMVTERT or MCMVFST) extended median lifespan by 41.4% and 32.5%, respectively. We report CMV being used successfully as both an intranasal and injectable gene therapy system to extend longevity. Specifically, this treatment significantly improved glucose tolerance, physical performance, as well as preventing body mass loss and alopecia. Further, telomere shortening associated with aging was ameliorated by TERT and mitochondrial structure deterioration was halted in both treatments. Intranasal and injectable preparations performed equally well in safely and efficiently delivering gene therapy to multiple organs, with long-lasting benefits and without carcinogenicity or unwanted side effects. Translating this research to humans could have significant benefits associated with quality of life and an increased health span.


Subject(s)
Cytomegalovirus Infections , Genetic Therapy , Life Expectancy , Telomerase , Administration, Inhalation , Animals , Follistatin/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/genetics , Injections, Intraperitoneal , Mice , Models, Animal , Neoplasms , Telomerase/genetics , Telomerase/metabolism
13.
Biol Reprod ; 107(4): 1125-1138, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35594452

ABSTRACT

In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.


Subject(s)
Raptors , Sertoli Cells , Animals , Anti-Mullerian Hormone/genetics , Estrogens/metabolism , Female , Fibroblast Growth Factor 9/genetics , Follistatin/genetics , Gene Expression Regulation, Developmental , LIM-Homeodomain Proteins/genetics , Male , Mammals/genetics , Mice , Raptors/genetics , Raptors/metabolism , SOX9 Transcription Factor/genetics , Sertoli Cells/metabolism , Sex Determination Processes/genetics , Testis/metabolism , Transcription Factors/genetics
14.
J Reprod Immunol ; 151: 103618, 2022 06.
Article in English | MEDLINE | ID: mdl-35378491

ABSTRACT

The cytokine activin A is expressed throughout testicular development and is a critical regulator of macrophage function, but its effects on the testicular macrophages are not well-defined. Macrophage distribution and gene transcript levels were examined in testes of adult mice with reduced levels of either activin A (Inhba+/-), or its binding protein, follistatin (TghFST315). Macrophages were identified using F4/80 immunohistochemistry and enumerated by morphometry. Transcript levels were measured in testis extracts by qRT-PCR and Fluidigm ™ analyses. Interstitial macrophages were twice as numerous as peritubular macrophages in Inhba+/- and TghFST315 mice and their littermate controls. Macrophage numbers were significantly reduced in all regions of the Inhba+/- testis, and the volume density of peritubular and subcapsular macrophages was significantly reduced compared to littermate controls (by 52.9% and 36.3% respectively). Transcripts encoding macrophage chemokines, Csf1 and Ccl2, and receptor Csf1r, were elevated (by 35%, 44% and 27% respectively) in Inhba+/- testes, but Cx3cl1 and their receptors, Cx3cr1 and Ccr2, were not altered. Transcripts encoding MHC class II antigens and the co-stimulatory molecule Cd86, also increased (by 32% and 60% respectively), but other co-stimulatory molecules Cd80 and Cd274, and the scavenger receptor Mrc1 (CD206), were unaffected. In the follistatin-deficient testes, macrophage numbers and most macrophage-specific transcripts were not significantly affected, but Mrc1 expression was reduced by 35%. These data indicate that activin A maintains macrophage numbers, but selectively inhibits the levels of key transcripts associated with macrophage antigen-presentation, recruitment and differentiation in the adult mouse testis.


Subject(s)
Follistatin , Testis , Activins , Animals , Carrier Proteins/metabolism , Follistatin/genetics , Follistatin/metabolism , Humans , Macrophages/metabolism , Male , Mice
15.
Placenta ; 121: 145-154, 2022 04.
Article in English | MEDLINE | ID: mdl-35339026

ABSTRACT

INTRODUCTION: Preeclampsia (PE) is one of the main causes of maternal, fetal, and neonatal mortality. So far, the underlying mechanism of this pregnancy-specific syndrome remains unelucidated. The expression of Follistatin (FST) decreased in maternal serum (especially early onset severe PE) and placental trophoblasts of PE patients. However, whether FST-deficiency in preeclamptic placentas alters trophoblast function remains to be determined. METHODS: Trophoblast cell lines were cultured in vitro and LV3 short hairpin RNA (shRNA) was used to silence FST. Growth and differentiation factor 11 (GDF11) expression level in placentas and serum were detected by immunohistochemistry and enzyme-linked immune-sorbent assay, respectively. To verify the effect of reduced FST expression on trophoblasts, microRNA-24-3p, which was predicted to target the 3'-untranslated region (3'-UTR) of FST, was screened out, and miR-24-3p mimic, inhibitor was used to regulate FST expression in trophoblasts. RESULTS: Downregulation of FST significantly enhanced the apoptosis and impaired migration and invasion of trophoblast. Reduced FST caused the upregulation of GDF11 in trophoblasts. Interestingly, GDF11 reduced in preeclamptic placental microvascular endothelial cells. Dysregulation of FST-GDF11-Smad2/3 signaling pathway, leading to increased apoptosis of trophoblast. Expression levels of miR-24-3p, was significantly elevated in preeclamptic placentas. Trophoblast cells transfected with miR-24-3p mimics displayed impaired migration and invasion and increased apoptosis. Treated by miR-24-3p inhibitor, trophoblast cells exhibited rescued function. DISCUSSION: FST-deficiency impaired trophoblast function by upregulating GDF11 levels in trophoblasts. The regulation of FST-GDF11-Smad2/3 axis by microRNAs mimic or inhibitor may be critical to trophoblast function regulation and helps to deepen our understanding of the molecular mechanism of PE.


Subject(s)
MicroRNAs , Pre-Eclampsia , 3' Untranslated Regions , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology , Cell Movement , Cell Proliferation/genetics , Endothelial Cells/metabolism , Female , Follistatin/genetics , Follistatin/metabolism , Follistatin/pharmacology , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Humans , Infant, Newborn , MicroRNAs/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy , Smad2 Protein/metabolism , Trophoblasts/metabolism
16.
Sci Adv ; 8(6): eabj7651, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148175

ABSTRACT

Hair cell (HC) loss within the inner ear cochlea is a leading cause for deafness in humans. Before the onset of hearing, immature supporting cells (SCs) in neonatal mice have some limited capacity for HC regeneration. Here, we show that in organoid culture, transient activation of the progenitor-specific RNA binding protein LIN28B and Activin antagonist follistatin (FST) enhances regenerative competence of maturing/mature cochlear SCs by reprogramming them into progenitor-like cells. Transcriptome profiling and mechanistic studies reveal that LIN28B drives SC reprogramming, while FST is required to counterbalance hyperactivation of transforming growth factor-ß-type signaling by LIN28B. Last, we show that LIN28B and FST coactivation enhances spontaneous cochlear HC regeneration in neonatal mice and that LIN28B may be part of an endogenous repair mechanism that primes SCs for HC regeneration. These findings indicate that SC dedifferentiation is critical for HC regeneration and identify LIN28B and FST as main regulators.


Subject(s)
Cellular Reprogramming , Follistatin , Animals , Cellular Reprogramming/genetics , Cochlea/metabolism , Follistatin/genetics , Follistatin/metabolism , Hair Cells, Auditory/metabolism , Mice , Regeneration/genetics
17.
Anim Biotechnol ; 33(5): 824-834, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33170076

ABSTRACT

Follistatin (FST), a member of the transforming growth factor beta super-family regulates body growth by inhibiting the binding of myostatin (an inhibitor of growth) with its receptor in chicken. An experiment was conducted to explore ontogenic expression of the follistatin gene, determine polymorphism at the coding region of the gene and estimate its effect on growth traits in native (Aseel) and exotic broiler (PD-1) and layer (White Leghorn) chicken. The significant differences of FST gene expression were observed among the breeds revealing significantly (p < 0.05) higher expression in PD-1 line followed by White Leghorn and Aseel breeds during both embryonic and post-hatch period. The polymorphism at the functional domain of the FST gene was identified with the presence of 4 haplotypes. The follistatin haplogroups had the significant effect on body weights (p < 0.05) at 42 days of age in the White Leghorn, PD-1 and Aseel breeds (h1h1 in PD-1, h1h4 in White Leghorn and h1h2 haplogroups in Aseel breeds had the highest body weights of 770.04 ± 12.96, 246.28 ± 7.60 and 270.00 ± 10.68 g, respectively). It is concluded that the follistatin gene expressed differently during the embryonic and post-embryonic period across the breeds and the coding region of the gene was polymorphic having significant effects on growth traits in chicken.


Subject(s)
Chickens , Myostatin , Animals , Body Weight/genetics , Follistatin/genetics , Myostatin/genetics , Myostatin/metabolism , Programmed Cell Death 1 Receptor/metabolism , Transforming Growth Factor beta/metabolism
18.
Pathol Oncol Res ; 27: 1610032, 2021.
Article in English | MEDLINE | ID: mdl-34867090

ABSTRACT

This study explored the roles of activins and follistatin in colorectal cancers. Paired malignant and normal colonic tissues were collected from archived paraffin-embedded (n = 90 patients) alongside fresh (n = 40 patients) specimen cohorts. Activin ß-subunits, follistatin and Smad4 mRNAs and proteins were measured by real-time PCR and immunohistochemistry (IHC). Mature activin-A, -B, -AB and follistatin proteins were measured by ELISA. Cancer tissues having ≤ the 20th percentile of the Smad4 IHC score were considered as low (L-S4) group. The Smad4-intact SW480 and Smad4-null HT29 colon cancer cell lines were treated with activins and follistatin, and cell cycle was analysed by flow cytometry. The cell cycle inducing (CCND1/CCND3) and inhibitory (p21/p27) proteins alongside the survival (survivin/BCL2) and pro-apoptosis (Casp-8/Casp-3) markers were measured by immunofluorescence. Thirty-nine patients had right-sided cancers (30%) and showed higher rates of L-S4 tumours (n = 17; 13.1%) alongside worse clinicopathological characteristics relative to left-sided cancers. The ßA-subunit and activin-A increased, whilst ßB-subunit and activin-AB decreased, in malignant sites and the late-stage cancers revealed the greatest abnormalities. Interestingly, follistatin declined markedly in early-stage malignant tissues, whilst increased significantly in the advanced stages. All activin molecules were comparable between the early stage right- and left-sided tumours, whereas the late-stage right-sided cancers and L-S4 tumours showed more profound deregulations. In vitro, activin-A increased the numbers of the SW480 cells in sub-G1 and G0/G1-phases, whereas reduced the HT29 cell numbers in the sub-G1 phase with simultaneous increases in the G0/G1 and S phases. The p21/p27/Casp-8/Casp-3 proteins escalated, whilst CCND1/CCND3/BCL2/survivin declined in the SW480 cells following activin-A, whereas activin-A only promoted p21 and p27 alongside reduced CCND3 in the HT29 cells. By contrast, activin-AB increased the numbers of SW480 and HT29 cells in Sub-G1 and G0/G1-phases and promoted the anti-cancer and reduced the oncogenic proteins in both cell lines. In conclusion, activins and follistatin displayed stage-dependent dysregulations and were markedly altered during the advanced stages of right-sided and L-S4 cancers. Moreover, the activin-A actions in CRC could be Smad4-dependent, whereas activin-AB may act as a Smad4-independent tumour suppressor protein.


Subject(s)
Activins/metabolism , Colorectal Neoplasms/metabolism , Follistatin/metabolism , Smad4 Protein/metabolism , Activins/genetics , Activins/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Colorectal Neoplasms/pathology , Disease Progression , Female , Follistatin/genetics , Follistatin/pharmacology , Humans , Inhibin-beta Subunits/metabolism , Male , RNA, Messenger/genetics , Smad4 Protein/genetics
19.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385332

ABSTRACT

Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-ß superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.


Subject(s)
Bone Development/physiology , Follistatin/metabolism , Muscle, Skeletal/growth & development , Transforming Growth Factor beta/metabolism , Alleles , Animals , Bone Density , Follistatin/genetics , Gene Expression Regulation , Gene Expression Regulation, Developmental/physiology , Heterozygote , Homeostasis , Mice , Multigene Family , Signal Transduction , Transforming Growth Factor beta/genetics
20.
Neurobiol Aging ; 104: 32-41, 2021 08.
Article in English | MEDLINE | ID: mdl-33964607

ABSTRACT

Sarcopenia, or age-related loss of muscle mass and strength, is an important contributor to loss of physical function in older adults. The pathogenesis of sarcopenia is likely multifactorial, but recently the role of neurological degeneration, such as motor unit loss, has received increased attention. Here, we investigated the longitudinal effects of muscle hypertrophy (via overexpression of human follistatin, a myostatin antagonist) on neuromuscular integrity in C57BL/6J mice between the ages of 24 and 27 months. Following follistatin overexpression (delivered via self-complementary adeno-associated virus subtype 9 injection), muscle weight and torque production were significantly improved. Follistatin treatment resulted in improvements of neuromuscular junction innervation and transmission but had no impact on age-related losses of motor units. These studies demonstrate that follistatin overexpression-induced muscle hypertrophy not only increased muscle weight and torque production but also countered age-related degeneration at the neuromuscular junction in mice.


Subject(s)
Aging/pathology , Aging/physiology , Follistatin/pharmacology , Muscle, Skeletal/pathology , Neuromuscular Junction/drug effects , Neuromuscular Junction/physiology , Animals , Female , Follistatin/genetics , Follistatin/metabolism , Gene Expression , Hypertrophy/genetics , Male , Mice, Inbred C57BL , Organ Size/drug effects , Organ Size/genetics , Sarcopenia/genetics , Sarcopenia/prevention & control , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...